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Abstract
Adenosine deaminase (ADA, EC 3.5.4.4) catalyses the irreversible deamination of adenosine and 20-deoxyadenosine to
inosine and 20-deoxyinosine, respectively. In this study the inhibition of ADA from bovine spleen by several molecules
with structure related to that of the substrate or product has been quantified. The inhibitors adenine, purine, inosine,
2-aminopurine, 4-aminopyrimidine, 4-aminopyridine, 4-hydroxypyridine and phenylhydrazine are shown to be competitive
inhibitors with KI (mM) values of 0.17, 1.1, 0.35, 0.33, 1.3, 1.8, 1.4 and 0.25, respectively. Synergistic inhibition by
various combinations of molecules that imitate the structure of the substrate has never been observed. Some general
conclusions are: i) the enzyme ADA from bovine spleen we have used is appropriate for kinetic studies of inhibition and
mechanistic studies; it can be a reference catalytic system for the homogeneous comparison of various inhibitors; ii) this
enzyme presents very rigid requirements for binding the substrate: variations in the structure of adenosine imply the loss of
important interactions.
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Introduction

The enzyme adenosine deaminase (ADA, EC 3.5.4.4)

is an important enzyme [1] of the purine metabolism

which catalyses the irreversible deamination

of adenosine and 20-deoxyadenosine to inosine and

20-deoxyinosine, respectively (scheme 1).

This enzyme has been found in plants, bacteria [2],

invertebrates [3], vertebrates [4] and mammals [5, 6],

including humans [7–9]. ADA is present in many

human tissues, but the highest levels have been found

in lymph nodes, spleen and thymus [1]. Bovine ADA

is more closely related to human ADA [10, 11].

Regarding the mechanism of the ADA reaction the

evidences so far accumulated are in agreement with an

aromatic nucleophilic substitution [12]. The nucleo-

phile is formed by interaction of a water molecule with

Znþþ , present in the active site; deprotonation of this

activated H2O molecule by the imidazole ring of His

238 allows the formation of a strong nucleophile that

will substitute the NH2 group of the substrate by OH

group. Glu 217 plays a key role; in fact, protonation of

the N atom of the heteroaromatic substrate provides a

strong stabilization of the transition state of the process.

The importance of inhibition studies of ADA is well

recognized; in fact, various potential therapeutic use

of ADA inhibitors have been suggested. [13–18].

Several studies on the effect of ADA inhibitors on

the release of adenosine in the central nervous system

[19–21] indicate that pharmacological potentiation of

the formation of endogenous extra cellular adenosine

may have interesting therapeutic application [22–25].

Also, ADA inhibitors attenuate myocardial ischemic

injury and it has been suggested that ADA inhibition

can be useful in cardiovascular protection in hyper-

tension [26].

Our interest for this enzyme is related to the

particular mechanism of its reaction, where a key

activation of the process is provided by protonation of

N1 atom of the adenosine substrate, with strong

stabilization of the transition state related to the

intermediate carbanion. Other examples of biological
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systems, where a similar effect of stabilization of an

intermediate carbanion by a protonated N atom part

of an heteroaromatic system is operating, are the

mechanism of reaction with the enzyme Histidine

Ammonia Lyase [27] and the chemistry of pyridox-

alphosphate [28, 29]. In previous studies we have

quantified the effect of protonation of the N atom of a

pyridine ring on the rate and mechanism of related

elimination reactions [30–35].

In literature there are several reports [1, 36–43] of

studies of ADA inhibition but various types of ADA or

different enzyme purification procedures have been

used. With this work we decided to explore the

characteristics of the inhibition of ADA from bovine

spleen (SIGMA, type V) so that the inhibition of

various molecules is compared with respect to the same

enzyme, which could be then a reference system for

studies of ADA inhibition. In this paper the inhibition

study has focused manly on the inhibition potentiality

of various parts of the substrate or parts of the product.

The synergistic inhibition of mixture of molecules that

imitate the substrate structure has been also tested.

Materials and methods

Adenosine deaminase from bovine spleen, type V, was

from Sigma. 8ml of commercial ADA (1.6 ml,

1.3 mg prot/ml, 60–130 units/mg protein) were

diluted with 6 ml of a solution of BSA. The solution

of BSA was prepared with < 10 mg of protein in 10 ml

of phosphate buffer (pH ¼ 7.5). The solution of the

diluted enzyme was kept at 08C and it was found to be

stable for < 2–3 weeks. The substrate adenosine and

all the inhibitors tested were commercial, recrystal-

lised materials. The water used was redistilled and

freshly boiled.

Initial rate studies were performed with 20ml of the

diluted solution of ADA in 2 ml of 50 mM solution of

phosphate buffer, pH ¼ 7.5, in a cuvette at 258C.

The determination of V0 was made following the

formation of the product inosine at l ¼ 235 nm (the

difference in the extinction coefficients of inosine and

adenosine is D1235 nm ¼ 3500 M21 cm21), or at

l ¼ 265 nm, following the disappearance of adenosine

(D1265 nm ¼ 8400 M21 cm21). It was useful to have two

possibilities for the kinetic studies at the two l, because

some inhibitors showed strong absorption, so it was

chosen for the study the more appropriate wavelength.

The KM determined at the two l were in good

agreement and the average value is KM ¼ 40mM.

These studies were performed by using the standard

linearization method of Lineweaver-Burk. The adeno-

sine concentration was 0.014–0.3 mM.

The values of KI were determined by the standard

linearization method of Lineweaver-Burk (DRP) or by

the Dixon Plot (see below). The choice between the

two procedures was determined by the absorbance of

the starting systems.

Results and discussion

As a first approach to the study of potential inhibitors,

we have made a screening of several molecules with

various structures.

A comparison of the activity in the presence or

absence of inhibitor, VI/V0, can give an indication of

the strength of inhibition: VI is the initial rate in the

presence of inhibitor I and V0 is the initial rate in the

absence of inhibitor. In Table I are reported the values

of VI/V0 for the molecules tested. The concentration of

adenosine was 0.034 mM; 20ml of the diluted solution

of ADA were injected in 2 ml of phosphate buffer,

pH ¼ 7.5, 258C. The concentration of the inhibitor

was < 0.7 mM or higher or eventually compatible with

the absorbance of the solution. For some compounds

giving modest inhibition, shown in Table I, it has not

been possible the determination of the KI values for

the high absorbance of their solutions.

Following the indication of the screening of

Table I we have studied the inhibition of adenine,

purine, inosine, 2-aminopurine, 4-aminopyrimidine,

4-aminopyridine, and 4-hydroxypyridine, phenyl

hydrazine. We have used the Dixon plot or the DRP

methods, choosing the treatment (and the l of work)

more convenient in relation to the problems of

absorbance of the solutions. With all the inhibition

studied we have found competitive inhibition. In

Table II are reported the calculated values of KI (mM)

and the conditions of the studies.

As an example of Dixon Plot [44, 45] is reported in

Figure 1 the plot with adenine; with this treatment V0

are determined at fixed [adenosine] and varying the

[I]. A plot of 1/V0 vs the [I] at the various [substrate]

tested gives straight lines with a common intersection

on the X-axis of value ¼ 2KI, if the inhibition is a

competitive inhibition. A check of the consistency of

the data can be made because the y value of the

intersection must be 1/Vm. An example of calculation

Scheme 1.

Adenosine deaminase inhibition 183



Table I. Values of fractional activity VI/V0 for ADA (258C, phosphate buffer 0.05 M, pH 7.5 and [adenosine] ¼ 0.034mM.

Inhibitor (I) [I] (mM) V0 (mM min21) VI (mM min21) VI/V0

Adenine 0.334 1.56 0.84 0.54

Purine 0.668 1.54 1.28 0.83

Inosine 0.662 1.54 0.82 0.53

2 amino-purine 0.660 1.56 0.89 0.57

Ribose 0.713 1.54 1.54 1

Imidazole 0.796 1.54 1.54 1

4 amino-pyrimidine 0.672 1.54 1.30 0.84
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Table I – continued

Inhibitor (I) [I] (mM) V0 (mM min21) VI (mM min21) VI/V0

4 amino-pyridine 0.657 1.54 1.42 0.92

4 hydroxy-pyridine 0.668 1.54 1.35 0.88

2 hydroxy-pyrimidine 1.6 1.56 1.56 1

AMP 0.586 1.54 1.54 1

Thiamine 0.561 1.54 1.21 0.79

Caffeine 0.672 1.54 1.40 0.91
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Table I – continued

Inhibitor (I) [I] (mM) V0 (mM min21) VI (mM min21) VI/V0

Xanthosine 0.664 1.54 1.36 0.88

Theobromine 0.532 1.54 1.25 0.81

Theophylline 0.665 1.54 1.33 0.86

7-(b-hydroxy-propyl)-

theophylline

0.658 1.54 1.19 0.77

2 Octanol 1.47 1.56 1.56 1

Hydrazine 0.684 1.56 1.55 1

Phenyl-hydrazine 0.510 1.56 0.44 0.28
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of KI by DRP for competitive inhibition is shown in

Figure 2 for phenylhydrazine.

We have also studied the synergistic inhibition of

various combinations of molecules that, used

in equimolar concentration, imitate the structure of

the substrate or part of it. We have tried the

combinations adenine þ ribose, adenine þ octanol, 2-

aminopurine þ ribose, 2-aminopurine þ octanol, 4-

aminopyrimidine þ imidazole, 4-aminopyrimidine þ

imidazole þ ribose, 4-hydroxypyridine þ imidazole þ

ribose. In all the cases the inhibition observed was the

one expected for the single inhibitors and we have never

found synergistic inhibition.

From Table II we observe that adenine presents

competitive inhibition with KI ¼ 0.17 mM,(the value

reported in literature34 with ADA from Mithilus

Edulis, 178C, pH ¼ 6 is 0.02 mM); with respect to

KM ¼ 0.04 mM with adenosine substrate, this value is

significantly larger, then adenosine is bonded by ADA

strongly than adenine. It is then important for binding

the presence of the ribose structure, but we note that

ribose is not inhibitor neither alone neither in synergy

whit adenine. We conclude that ADA has quite rigid

requirements for the optimization of the interactions

in the active site for binding the substrate adenosine.

Purine has KI ¼ 1.1 mM, being weaker inhibitor

with respect to adenine; this result shows the

importance of the NH2 group for binding, in

agreement with the suggested interactions [12] of

this group with Glu 217. The inhibitor 4-aminopyr-

imidine has a structure that is related to adenosine

missing the ribose and imidazole rings. We found

KI ¼ 1.3 mM similar to that of purine. 2-aminopurine

presents KI ¼ 0.33 mM, being then a good inhibitor,

close to adenine; this result shows the importance of

the presence of the NH2 group in the inhibitor

relatively independent on its position. 4-aminopyri-

dine presents KI ¼ 1.8 mM, being weaker inhibitor

than 4-aminopyrimidine. Inosine presents

KI ¼ 0.35 mM; (the value reported in literature33

with ADA from calf intestinal mucosa, 278C,

pH ¼ 7.5, is KI ¼ 0,143 mM). 4-hydroxypyridine

with a structure that is one part of inosine, has

KI ¼ 1.4 mM.

We have studied AMP and found that this molecule

is not a substrate for ADA and a modest inhibitor at

high concentration. In fact at 1.31 mM the ratio VI/V0

is 0.63 ([adenosine] ¼ 0.034 mM): clearly the pre-

sence of the phosphate group decreases strongly the

possibility of the binding interactions in the active site.

We have also studied the inhibition by molecules

such as hydrazine (NH2-NH2), hydroxylamine

(NH2OH) and phenyl hydrazine. The reason for the

choice of these potential inhibitors was related to the

fact that a key aspect of ADA catalysis in the active site

is the protonation by Glu 217 of the N1 nitrogen

heteroaromatic atom of the substrate. These mol-

ecules are known to give the “a effect” [46], in fact

they are able to interact with a proton in amplified way

Figure 2. 1/V0 vs 1/[S] plot for the ADA reaction with adenosine

(258C, phosphate buffer 0.05 mM. pH 7,5) in the presence of

phenylhydrazine at various concentrations. (B) [I] ¼ 0; (W)

[I] ¼ 0.17 mM; (O) [I] ¼ 0.425 mM.

Figure 1. Dixon plot 1/V0 vs [adenine] for the

ADA reaction with adenosine (258C, phosphate buffer

0.05 mM, pH 7.5) in the presence of adenine (0, 0.17, 0.34 mM)

(B) [adenosine] ¼ 0.0199 mM; (W) [adenosine] ¼ 0.033 mM; (O)

[adenosine] ¼ 0.066 mM; (S) [adenosine] ¼ 0.099 mM.

Table II. Calculated values of KI (mM) for inhibition of ADA

(258C, phosphate buffer 0.05 mM, pH 7.5) by various inhibitors.

The error on KI values is ^ 10%.

Inhibitor (I) l (nm) Method KI (mM)

Adenine 235 Dixon Plot 0.17

Purine 235 Dixon Plot 1.1

Inosine 265 DRP 0.35

2-aminopurine 265 Dixon Plot 0.33

4-aminopyrimidine 265 Dixon Plot 1.3

4-aminopyridine 235 Dixon Plot 1.8

4-hydroxypyridine 235 Dixon Plot 1.4

Phenylhydrazine 265 DRP 0.25
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with respect to their basicity. We have found that

hydrazine and hydroxylamine are not inhibitors, while

there is a significant inhibition by phenyl hydrazine,

with KI ¼ 0.25 mM. As long as the pKa of the

molecules are 8.2, 6.17, 5.27 respectively [47], we

propose that the inhibition is related to the interaction

of the NH2 group with the proton of Glu 217 in the

active site, but that the presence of the hydrophobic

phenyl ring is important for binding; then probably

close to Glu 217 in the active site there could be an

hydrophobic task.

Finally, we tried iodoacetamide as “affinity label”

inhibitor [44] to see if it was possible the

covalent binding by SN2 reaction with a nucleophile

(ex. imidazole ring) in the active site and then have

irreversible inhibition, but no inhibition was observed.

Some general conclusions that can be made from

this study are:

The ADA enzyme has very rigid requirements for

binding adenosine substrate: variations in the

structure of adenosine imply the loss of important

interactions; in agreement with this conclusion is

also the finding that synergistic inhibition has not

been observed in any case studied;

The quantification of the inhibition by molecules

that are part of the substrate or of product is useful

for the identification of structures potentially

inhibitors, then for the project of new inhibitors;

The ADA enzyme from bovine spleen we have used

in our study is a quite stable enzyme, appropriate

for kinetic studies of inhibition and mechanistic

studies and can be a reference catalytic system for

the homogeneous comparison of various inhibitors.
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